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Abstract

Physionet and Computing in Cardiology have is-
sued a challenge for the early prediction of sepsis
in Intensive Care Unit patients. The data consists
of 40,366 hospital patients of which only 2,932
ever have a septic event. Leveraging a wide ar-
ray of tools including Missing Indicators (Mls),
taking difference values between sequential time
steps, and using sampling based methods and class
weights we were able to overcome many of the
challenges this competition presented. Our em-
pirical results show our methods of XGBoost and
Balanced Random Forests coupled with our data
pre-processing steps highly outperform the base-
line, rule based model for the prediction of sepsis.
Experimental results suggest that even better re-
sults may be achieved through further ensembling
of more complex models.

1 Introduction

Sepsis is a critical illness that can occur as the hu-
man body is responding to an infection (Singer
et al.,, 2016). To combat an infection, chemi-
cals are released by the immune system which can
cause inflammation in the entire body — in extreme
cases this can lead to organ failure and be fatal if
left untreated. The Center for Disease Control re-
ports! that 1.7 million adults in the United States
develop sepsis every year, and 270,000 die as a re-
sult. Due to this large impact on healthcare, early
detection of sepsis is a major research area facing
clinicians and researchers today.

Early prediction of sepsis is key for increasing
the rate of survival; studies have shown that early
intervention with sepsis patients leads to a signif-
icant reduction in mortality (Rivers et al., 2001).
Specifically, Kumar et al. (2006) suggested that
each hour of delayed antimicrobial administration

'https://www.cdc.gov/sepsis/datareports/index.html

led to an average 4-8% decrease in the survival rate
of sepsis patients. In an effort to increase the abil-
ity of clinicians to identify patients who will de-
velop sepsis before it occurs, Physionet® and the
Computing in Cardiology community have out-
lined a competition for the early prediction of the
onset of sepsis®. This competition has been de-
signed to replicate the real-life scenario of in hos-
pital sepsis prediction, i.e. given the patient’s re-
cent history predict if they will experience sepsis
in the next few hours. Here, recent history refers
to the information given by vital signs, laboratory
tests, and patient demographics over the time they
have been in the hospital (typically for a few hours
or days).

This type of classification problem poses a num-
ber of difficulties. The data is comprised of
multivariate timeseries data of differing sequence
lengths, i.e patients stay for differing amounts of
time. Additionally, due the nature of real time
medical classification the data will often contain
many missing values. For example, patients may
only have lab tests completed once every 12 hours,
or may never have lab tests, leading to features
with over 99% missing rates. On top of this, miss-
ing data is likely not Missing Completely At Ran-
dom (MCAR), a common assumption when work-
ing with missing data. Since healthier patients
may not need lab tests there will likely be a de-
pendence between missing values and the patient’s
outcome, falsifying the MCAR assumption.

This work discusses our approach to dealing
with the many difficulties this challenge presents.
We first discuss and summarize the related work in
Section 2, and follow with our methodology and
empirical results in Sections 3 and 4. Future work
and concluding remarks are made in Sections 5

Zhttps://physionet.org/
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and 6.

2 Related Work

In the last few years a number of papers have
explored the use of a wide variety of machine
learning methods for the early prediction of sep-
sis. Most notable has been the work of Calvert
et al. (2016b), the developer of Insight, which has
undergone numerous iterations and was recently
included in a clinical trial to test its effectiveness
in the early prediction of sepsis (Calvert et al.,
2016b,a; Shimabukuro et al., 2017; Mao et al.,
2018). The Insight model uses sliding windows on
patient vital signs, calculating the feature means
and feature differences between the window to in-
corporate the time dimension of the patient’s fea-
tures. To elaborate, if a sliding window of size five
is used, the features will consist of the average of
patients vital signs over 5 hours and the difference
between the value of the vital sign at the current
time and the value acquired 5 hours prior. After
using the sliding window for feature construction,
the constructed features are aggregated to create a
risk score to classify patients as likely to experi-
ence sepsis in the next few hours and those who
are unlikely to experience sepsis in the next few
hours (Calvert et al., 2016b,a).

Newer iterations of the Insight model have used
gradient tree boosting on these same vital signs for
classification, however, instead of using a sliding
window they include the both the current and pre-
vious time points as features in addition to the dif-
ferences between the current and previous values
to account for the temporal nature of the data (Mao
etal., 2018).

Another recent work has explored the use of
models from survival analysis — namely the Cox
proportional hazards model with a Weibull base
hazard function — for the early prediction of sep-
sis (Nemati et al., 2018). Similar to the work of
Calvert et al. (2016b), this work made use of slid-
ing windows and a survival model was used to pre-
dict if sepsis will occur in the next 7" hours, where
they vary 7' throughout their experiments. Using
this model they were able to outperform a number
of baselines but no comparison to other machine
learning models were made.

3 Methods

This section first describes the data and details
the challenge presented by Physionet and Com-

ICU | HR Sepsis  Sepsis_Early
1 90 ... 0 0

87 ... 0 0
27 130 0 1
28 130 0 1
29 130 0 1
30 140 0 1
31 138 1 1
32 140 1 1

Table 1: An example data file for a single patient.
Here ICU refers to the hours in the ICU and HR
is the heart rate. Each patient has 8 vital signs, 26
possible laboratory tests, and 6 demographic vari-
ables. Note Sepsis_Early is the variable of interest
as we wish to predict sepsis before it occurs. In
total Sepsis_Early starts 12 hours prior to the onset
of sepsis (here we only show 4 hours for brevity).

puting in Cardiology and then introduces the cus-
tom evaluation metrix used for the challenge. Fol-
lowing this definition, we describe the data pre-
processing, feature construction, and models se-
lected for this competition.

3.1 Challenge Definition and Data

The challenge issued by PhysioNet and Comput-
ing in Cardiology is designed to predict the early
onset of sepsis in patients admitted to the Intensive
Care Unit (ICU). In total, a population of 40,336
patients was supplied, with 2,932 having a sepsis
event. Each patient observation is comprised of
vital signs, laboratory tests, and demographics for
every hour they stayed in the ICU. Across all pa-
tients there were an accumulative 1,552,210 hours
of patient data, of which 27,916 hours were la-
beled as sepsis events.

As the goal of this challenge is early prediction,
a sepsis event is defined as the patient experienc-
ing sepsis as well as the twelve hours prior to expe-
riencing sepsis. See Table 1 for an example of the
data supplied for a single patient. Given this infor-
mation, the outcome of a learned model is to pre-
dict if a patient will experience sepsis in the next
twelve hours. This prediction is made for every
hour a patient spends in the ICU. It is important to
note that algorithms are not allowed to see future
data, e.g. at 7 hours in the ICU, an algorithm is
only allowed to use the information from hours 1-
7 to predict if the patient will experience sepsis in



the next twelve hours.

As part of the challenge, a custom evaluation
function, referred to as the Utility Score, was cre-
ated by Physionet to rank submissions. They de-
fine the Utility Score, U (s, t), for each prediction
of each patient (s) for each time interval (¢):

U(s,t)rp True Positive
U(s 1) = U(s,t)pn False Negative .

U(s,t)pp False Positive

U(s,t)pn True Negative

As seen above the Utility Score is made up of 4
sub-functions defined for the four types of clas-
sification. For example, a true positive would be
predicting septic patient s is septic (or will become
septic in the next twelve hours) at time ¢, whereas
a false positive is predicting a non-septic patient
s is septic when they are not nor will they become
septic in the next twelve hours. As identifying sep-
tic patients is very crucial, an emphasis is applied
to true positives and false negatives — see Figures 1
and 2 for an example plot of each of the four Util-
ity functions. After calculation of the Utility Score
it is then normalized such that is resides between 0
and 1 where a score of 0 represents a model which
makes no predictions (all negatives) and 1 is the
perfect model. Note a model can still be nega-
tive if it predicts many false positives, e.g a model
which predicts all positives. For more details on
this evaluation function please see the challenge
website 4.

3.2 Data Pre-Processing

As previously mentioned, the data provided in this
challenge contains large amounts of missing val-
ues — laboratory tests are typically collected once
every twelve hours if at all. Excluding patient de-
mographics, each patient feature is, on average,
missing 80% of its values with a maximum miss-
ing rate of 99.8%. To cope with this we performed
a forward-fill for each feature, i.e. the values for
each feature were carried to future time intervals
wherever it was applicable. Any other missing val-
ues (typically in the first few hours of stay in the
ICU) were replaced by the mean of each feature.
In addition to the forward-fill method we also
employ the use of Missing Indicators (MIs) intro-
duced by Lipton et al. (2016). A MI uses a value

*https://physionet.org/challenge/2019/
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Figure 1: Utility function for true positives and
false negatives. For a patient that starts experi-
encing sepsis at ¢ = 48, the optimal prediction
(6 hours prior to the onset of sepsis) counts for
+1 towards the Utility Score. The largest penalty
is incurred when a model fails to predict sepsis 3
hours after onset (f = 51), resulting in a penalty
of -2.
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Figure 2: Utility function for false positives and
true negatives. Since false positives only incur
minor effort from hospital staff there is a small
penalty of 0.05. True negatives give no penalty
nor any points towards the Utility Score.

of 1 to indicate that a feature’s value was imputed
(either by forward fill or using the mean imputa-
tion) and O if the value was actually observed. Lip-
ton et al. (2016) showed that the use of these MIs
significantly improved the performance of LSTMs
and RNNs in a sequential medical classification
task.

Due to the limited computational resources we
chose to not apply neural networks for this work
even though the processing of varied length se-
quential data is handled naturally by RNNs. In-
stead, we applied the methodology used by Mao
et al. (2018) to incorporate patient history into
the prediction. For each patient observation, Mao
et al. (2018) obtained 3 values from each feature
— the value at the current hour, the hour prior, and



2 hours prior. In addition they took two differ-
ence values: the difference between the current
hour and the hour prior and between the hour prior
and the 2 hours prior. Thus, each original fea-
ture in a patients file accounted for 5 features post-
transformations. We used this same methodology
for our data, however, we only applied this to the
vital signs which were collected every hour; since
laboratory values were rarely collected there was
no need to incorporate past values. After account-
ing for vital signs, difference values and past vital
signs, laboratory values, demographics, and indi-
cators there were a total of 107 features used for
every line of every patient.

3.3 Models

We employed two primary methods for this chal-
lenge, extreme gradient boosted trees (XGBoost)
and random forests. Very generally, XGBoost
is an ensemble technique used to combine weak
(shallow) decision trees iteratively such that each
following classifier attempts to correct for mis-
takes made by previous trees (Chen and Guestrin,
2016). XGBoost is different than typical gradi-
ent boosting machines in that it uses a regular-
ized model to help prevent overfitting and it was
built to be scalable to very large data such as those
provided in this challenge. While boosting nat-
urally deals with imbalanced data by iteratively
building trees on misclassified data, we addition-
ally weight instances due to the class imbalance
using a weight of 1’5’5”%’12610 ~ 55 for positive in-
stances.

For our random forest classifier, we use the
method introduced by Breiman et al. (2004)
known as the balanced random forests (BRF).
Breiman et al. (2004) introduced BRFs to allow
random forests to handle imbalanced data via an
altered bootstrap sampling procedure. Instead of
sampling a bootstrap size of N — the size of the
dataset — a sample of 2/V; is chosen where NV is
the number of instances of the minority class. Ad-
ditionally, the minority class’ sampling probabil-
ity is adjusted such that they are sampled evenly
with the majority class. For BRFs we also use the
variable selection strategy of OBrien and Ishwaran
(2019), who showed significant improvement in
random forests under imbalanced data. Features
are selected by their variable importance as mea-
sured by the Ishwaran-Kogalur importance using
G-mean prediction error (Ishwaran and Lu, 2019).

Criteria Threshold
Body Temp (C) <36 or >38
Heart Rate >90
White Blood Cell Count | <4 or >12
Respiratory rate >20

Table 2: The SIRS criteria and thresholds com-
monly used to identify sepsis.

If variables were found non-significant at the 5%
level they were discarded (significance as calcu-
lated by methods described in Ishwaran and Lu
(2019)).

4 Experiments

Since their is a significant amount of data we chose
to evaluate on a single train/test split as opposed to
cross validation measures. The data was split into
80% train, 20% test such that individual patients
were entirely contained either within the training
set or the test set, e.g. Patient 1 could not have
lines in the training set and the test set. Ideally
we would be able to compare against other models
submitted to the challenge, however, at the current
time the leaderboard for the competition has not
yet been made public. The competition’s prelimi-
nary phase ends on April 15, 2019 at which point
the leaderboard will be made available. For this
reason we have showed our results on a train/test
split as opposed to comparing against the compe-
tition test set.

As a baseline model, the early diagnostic crite-
ria, Systematic Inflammatory Response Syndrome
(SIRS) method was used (Rangel-Frausto et al.,
1995). SIRS uses four criteria (see Table 2) to
diagnosis sepsis and is commonly used as a base-
line model in early sepsis prediction (Calvert et al.,
2016b,a; Mao et al., 2018). While the SIRS score
ranges from zero to four, a value of 2 is indicative
of sepsis and is commonly used as the threshold
for diagnosis and as such we use SIRS > 2 to de-
lineate a positive sepsis prediction.

XGBoost was trained for 1500 iterations with
positive class weights of 55, and with a subsam-
pling proportion of 0.5 for computational speed
and to prevent overfitting. BRFs were trained us-
ing 3000 trees as suggested by Ishwaran and Ko-
galur (2019). In addition to the BRF models (both
with and without feature selection), we also con-
sider the average of the predictions between the
XGBoost model and the BRF model.



Table 3: The Utility Score and AUROC for the
primary models considered (higher scores are bet-
ter for both metrics). For the BRF models, FS
stands feature selection and bolded values indicate
the best performing model.

The Utility Score defined in Section 3 and the
area under the receiver operating characteristic
curve (AUROC) are used as our evaluation met-
rics and are reported in Section 4.1. An ablation
analysis studying the usefulness of MlIs and the
difference features (DFs) are presented in Section
4.2

4.1 Results

Table 3 shows the results of the models tested on
both the Utility Score and the AUROC. Of note is
that all models greatly surpasses the baseline SIRS
model. While SIRS scored very poorly in terms of
the Utility Score and the AUROC, it was similar
to results found using comparable datasets in prior
works (Mao et al., 2018; Gupta et al., 2018). It
appeared that SIRS had an extremely high false
positive rate, lowering its overall score.

Between the BRF and the XGBoost models,
XGBoost outperformed BRF (both with feature
selection and no feature selection) on the Utility
Score but were equivalent for the AUROC. We
found feature selection was not helpful for the
BRF model and so was not tested with the XG-
Boost model nor considered in the ablation analy-
sis in the following section.

While XGBoost outperformed the BRF models,
when the prediction probabilities between BRF
(no feature selection) and the XGBoost model
were averaged, they slightly outperformed all the
other models. This suggests that an ensemble of
multiple model types may be beneficial for future
performance gains.

4.2 Ablation Analysis

In order to consider the impact that the MI and
difference features (DFs) have on the analysis we
reran the analysis without using the MI features

Model Utility Score  AUROC Model Utility Score AUROC
SIRS 0.062 0.617 BRF - No FS 0.385 0.834
BRF - No FS 0.385 0.834 BRF - No FS/MI 0.368 0.828
BRF - FS 0.384 0.833 BRF - No FS/DF 0.379 0.832
XGBoost 0.411 0.834 XGBoost 0411 0.834
Avg. Prediction 0.414 0.840 XGBoost - No MI 0.404 0.832
XGBoost - No DF 0.413 0.834

Table 4: Ablation analysis of the Missing Indica-
tor features introduced by Lipton et al. (2016) and
the difference features (DFs) used by Mao et al.
(2018). Both BRFs and XGBoost with and with-
out MIs are considered here. Bolded values indi-
cate the best performing models within each sub-
group (BRF and XGBoost). Values for XGBoost
and BRF - No FS are repeated from Table 3 for
comparability.

and without the DFs separately. The results from
this analysis are presented in Table 4.

While not having a profound impact, it is clear
that including the MI features are useful to both
the XGBoost and BRF models. BRF in particu-
lar appeared to be impacted by the inclusion of MI
features as the Utility score rose by 0.077 (more
than the total score achieved by SIRS), but AU-
ROC only increases slightly from 0.828 to 0.834.

Interestingly, scores of XGBoost actually im-
proved when the difference features were re-
moved. While only a marginal difference, the
Utility Score for XGBoost rose by 0.002 and the
AUROC remained constant. For BRF the Utility
Score and AUROC dropped a very small amount,
0.006 and 0.002 respectively. This is suggestive
that the DFs are not actually beneficial and may
instead be acting as noisy features. Rather, it ap-
pears models can rely on the realized values of vi-
tal signs for the early prediction of sepsis without
additional feature construction.

5 Future Work

The official competition deadline is August 25,
2019 so there is lots of opportunity to make im-
provements to the model. Prior work has shown
that using heuristic tables similar to those used by
the rule based systems used in practice (e.g. SIRS)
can greatly improve the performance of different
machine learning models for the early prediction
of sepsis (Calvert et al., 2016b,a). Using such
methods may improve our own XGBoost and BRF
models as well.



Our basic ensemble of XGBoost and the BRF
model suggests that performance may improve as
more models are ensembled together. This opens
the door to using more complex models such as
neural networks for prediction and can be further
optimized through ensembling.

6 Conclusion

The Physionet challenge for the early prediction
of sepsis posed many challenges including varying
length multivariate sequential data, a large class
imbalance, and an inordinate amount of missing
data. By combining various techniques for data
pre-processing and feature construction we were
able to resolve these issues and build an XGBoost
model and an BRF model which substantially out-
performed the rule based SIRS baseline model.
Future gains were observed through a simple aver-
aging of model results suggesting that more com-
plex ensembling methods of different types of
models may achieve even higher performance.

An ablation analysis suggested that while MI
features were beneficial for prediction, the DFs
used by Mao et al. (2018) were not beneficial and
could actually be detrimental to predictive ability
of the models considered. In the future we plan
to utilize heuristic tables and ensemble additional
types of models to raise the performance of our
system in the Physionet 2019 challenge.
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